Transductive Learning from Textual Data with Relevant Example Selection
نویسنده
چکیده
In many textual repositories, documents are organized in a hierarchy of categories to support a thematic search by browsing topics of interests. In this paper we present a novel approach for automatic classification of documents into a hierarchy of categories that works in the transductive setting and exploits relevant example selection. While resorting to the transductive learning setting permits to classify repositories where only few examples are labelled by exploiting information potentially conveyed by unlabelled data, relevant example selection permits to tame the complexity of the task and increase the rate of learning by focusing only on informative examples. Results on real world datasets show the effectiveness of the proposed solutions.
منابع مشابه
Hierarchical Transductive Classification from Textual Data with Relevant Example Selection
In many textual repositories, documents are organized in a hierarchy of categories to support a thematic search by browsing topics of interests. In this paper we present a novel approach for automatic classification of documents into a hierarchy of categories that works in the transductive setting and exploits relevant example selection. While the transductive learning setting permits to classi...
متن کاملTransductive Gaussian Process Regression with Automatic Model Selection
In contrast to the standard inductive inference setting of predictive machine learning, in real world learning problems often the test instances are already available at training time. Transductive inference tries to improve the predictive accuracy of learning algorithms by making use of the information contained in these test instances. Although this description of transductive inference appli...
متن کاملEffective transductive learning via objective model selection
This paper is concerned with transductive learning. We study a recent transductive learning approach based on clustering. In this approach one constructs a diversity of unsupervised models of the unlabeled data using clustering algorithms. These models are then exploited to construct a number of hypotheses using the labeled data and the learner selects an hypothesis that minimizes a transductiv...
متن کاملEffective Transductive Learning via PAC-Bayesian Model Selection
We study a transductive learning approach based on clustering. In this approach one constructs a diversity of unsupervised models of the unlabeled data using clustering algorithms. These models are then exploited to construct a number of hypotheses using the labeled data and the learner selects an hypothesis that minimizes a transductive PACBayesian error bound, which holds with high probabilit...
متن کاملTransductive Rademacher Complexity and Its Applications
We develop a technique for deriving data-dependent error bounds for transductive learning algorithms based on transductive Rademacher complexity. Our technique is based on a novel general error bound for transduction in terms of transductive Rademacher complexity, together with a novel bounding technique for Rademacher averages for particular algorithms, in terms of their “unlabeled-labeled” re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010